检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:武瑞仙[1] 邓子兵[1] 谯治蛟[1] 李晓松[1]
机构地区:[1]四川大学华西公共卫生学院卫生统计学教研室,610041
出 处:《中国卫生统计》2015年第3期534-536,539,共4页Chinese Journal of Health Statistics
摘 要:目的 以医疗卫生机构年报资料为数据来源,采用成组删除法、极大似然估计法、多重填补法分别对模拟的完全随机缺失数据集缺失值进行处理,比较不同缺失率下三种方法的缺失处理效果。方法 运用SAS9.3,采用Monte Carlo技术模拟完整数据集及不同缺失比例数据集,利用成组删除法、EM算法、MCMC算法对缺失数据进行处理,得到不同处理方法后的参数估计结果,与完整数据集参数估计进行比较。结果 对于完全随机缺失数据,不同缺失率下,成组删除法的准确率均比较好;缺失率小于10%,三种方法处理效果差异不大;缺失率在10%-30%,成组删除法精确度逐渐降低,EM与MCMC准确度与精确度较好,缺失率大于30%,MCMC准确度与精确度相对较好。结论 对于不同缺失率的数据,综合考虑准确度和精确度,采用不同的方法进行处理。
关 键 词:缺失值 EM算法 MARKOV CHAIN MONTE Carlo 模拟 参数
分 类 号:R195.1[医药卫生—卫生统计学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.73