利用Monte Carlo技术模拟研究不同缺失值处理方法对完全随机缺失数据的处理效果  被引量:8

在线阅读下载全文

作  者:武瑞仙[1] 邓子兵[1] 谯治蛟[1] 李晓松[1] 

机构地区:[1]四川大学华西公共卫生学院卫生统计学教研室,610041

出  处:《中国卫生统计》2015年第3期534-536,539,共4页Chinese Journal of Health Statistics

摘  要:目的 以医疗卫生机构年报资料为数据来源,采用成组删除法、极大似然估计法、多重填补法分别对模拟的完全随机缺失数据集缺失值进行处理,比较不同缺失率下三种方法的缺失处理效果。方法 运用SAS9.3,采用Monte Carlo技术模拟完整数据集及不同缺失比例数据集,利用成组删除法、EM算法、MCMC算法对缺失数据进行处理,得到不同处理方法后的参数估计结果,与完整数据集参数估计进行比较。结果 对于完全随机缺失数据,不同缺失率下,成组删除法的准确率均比较好;缺失率小于10%,三种方法处理效果差异不大;缺失率在10%-30%,成组删除法精确度逐渐降低,EM与MCMC准确度与精确度较好,缺失率大于30%,MCMC准确度与精确度相对较好。结论 对于不同缺失率的数据,综合考虑准确度和精确度,采用不同的方法进行处理。

关 键 词:缺失值 EM算法 MARKOV CHAIN MONTE Carlo 模拟 参数 

分 类 号:R195.1[医药卫生—卫生统计学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象