Effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging  

Effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging

在线阅读下载全文

作  者:Wei Gu Jing-yuan Li Yi-de Wang 

机构地区:[1]School of Materials Science and Engineering, University of Science and Technology Beijing

出  处:《International Journal of Minerals,Metallurgy and Materials》2015年第7期721-728,共8页矿物冶金与材料学报(英文版)

摘  要:The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatter diffraction analysis of misorientation angle distribution, cumulative misorientation and geometrically necessary dislocation (GND) density. Experimental results indicate that coarse spindle-shaped grains with the dimension of 200 μm- 80 μm separate into fine equiaxed grains of 20μm in size as a result of newborn low-angle grain boundaries formed during the aging process. More specifically, the dislocation arrays, which are rearranged and formed due to scattered dislocations during earlier quenching, transform into low-angle grain boundaries with aging time. The relative frequency of 3°-5° low-angle grain boundaries increases to over 30%. The GND density, which describes low-angle grain boundaries with the misorientation angle under 3°, tends to decrease during initial aging. The inhomogeneous distribution of GNDs is affected by grain orientation. A decrease in GND density mainly occurs from 1.83 × 10^13 to 4.40 × 10^11 m^-2 in grains with 〈111〉 fiber texture. This is consistent with a decrease of unit cumulative misorientation. Precipitation on grain boundaries and the formation of a precipitation free zone (PFZ) are facilitated due to the eroding activity of the Graft etchant. Consequently, low-angle grain boundaries could be readily viewed by optical microscopy due to an increase in their electric potential difference.The effect of dislocation structure evolution on low-angle grain boundary formation in 7050 aluminum alloy during aging was studied by using optical microscopy, transmission electron microscopy, and electron backscatter diffraction analysis of misorientation angle distribution, cumulative misorientation and geometrically necessary dislocation (GND) density. Experimental results indicate that coarse spindle-shaped grains with the dimension of 200 μm- 80 μm separate into fine equiaxed grains of 20μm in size as a result of newborn low-angle grain boundaries formed during the aging process. More specifically, the dislocation arrays, which are rearranged and formed due to scattered dislocations during earlier quenching, transform into low-angle grain boundaries with aging time. The relative frequency of 3°-5° low-angle grain boundaries increases to over 30%. The GND density, which describes low-angle grain boundaries with the misorientation angle under 3°, tends to decrease during initial aging. The inhomogeneous distribution of GNDs is affected by grain orientation. A decrease in GND density mainly occurs from 1.83 × 10^13 to 4.40 × 10^11 m^-2 in grains with 〈111〉 fiber texture. This is consistent with a decrease of unit cumulative misorientation. Precipitation on grain boundaries and the formation of a precipitation free zone (PFZ) are facilitated due to the eroding activity of the Graft etchant. Consequently, low-angle grain boundaries could be readily viewed by optical microscopy due to an increase in their electric potential difference.

关 键 词:aluminum alloys low-angle grain boundaries dislocation structure AGING dislocation density 

分 类 号:TG146.21[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象