检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:潘文静[1]
出 处:《广东电力》2015年第7期6-9,32,共5页Guangdong Electric Power
摘 要:为解决结渣问题对电站锅炉高效稳定运行的影响,探讨了一种煤灰熔点预测模型。首先分析锅炉混煤燃烧时的煤灰结渣特性,介绍了支持向量机(support vector machine,SVM)回归方法,将煤灰中的8种氧化物成分作为输入量,以煤灰熔点作为输出量,建立煤灰熔点的SVM回归预测模型,并采用遗传算法对模型参数进行寻优。经过仿真实验,将模型的预测结果与广义回归神经网络模型的预测结果进行比较,结果表明本预测模型预测精度高、泛化能力强,有助解决电站锅炉的动力配煤技术中的结渣问题。In order to solve the problem of affect on high effective stable operation of power station boiler by slagging,a kind of prediction model for coal ash fusion point was discussed.Firstly,characteristic of coal ash slagging of the boiler at the time of blended coal combustion was analyzed,support vector machine(SVM)regression method was introduced which took eight oxide ingredients in coal ash as inputs,coal ash fusion point as output and built SVM regression prediction model for coal ash fusion point.Meanwhile,genetic algorithm(GA)was used for optimizing model parameters.By simulation experiment,comparison of prediction result of the model and that of generalized regression neural network model was made.Results indicate that prediction precision of this prediction model is high and generalization ability is good which could solve slagging problem in dynamic coal-blending technology for power station boiler.
关 键 词:电站锅炉 配煤技术 支持向量机 遗传算法 灰熔点预测
分 类 号:TK227.1[动力工程及工程热物理—动力机械及工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.120.29