基于渐非凸渐凹化过程的子图匹配算法  

Subgraph matching algorithm based on graduated nonconvexity and concavity procedure

在线阅读下载全文

作  者:李晶[1,2] 刘传凯[3] 王勇[1,4] 古楠楠[5] 石锐[2] 李琳[2] 

机构地区:[1]中国酒泉卫星发射中心,酒泉732750 [2]重庆大学通信工程学院,重庆400044 [3]北京航天飞行控制中心,北京100094 [4]哈尔滨工业大学航天学院,哈尔滨150006 [5]首都经济贸易大学统计学院,北京100026

出  处:《北京航空航天大学学报》2015年第7期1202-1207,共6页Journal of Beijing University of Aeronautics and Astronautics

基  金:国家自然科学基金(61305137)

摘  要:如何实现外点存在情况下的鲁棒高效匹配是图匹配领域的关键问题之一.针对此问题,提出将渐非凸渐凹化过程(GNCCP)用于子图匹配,即将外点存在情况下的图匹配问题建模为一个基于相似矩阵的二次组合优化问题,然后通过扩展GNCCP来近似优化,是一种新的采用二阶约束图匹配算法.相较于现有算法,提出的算法优势在于可以泛化目标函数定义方式,有效处理外点存在的情况的图匹配问题,且能同时实现有向图匹配和无向图匹配.人工数据与真实数据上的实验证实了算法的有效性.To achieve robust and efficient matching with outliers is a fundamental problem in the field of graph matching. To tackle this problem, a novel subgraph matching algorithm was proposed, which was based on the recently proposed graduated nonconvexity and concavity procedure (GNCCP). Specifically speaking, the graph matching problem in the existence of outliers was firstly formulated as a quadratic combinatorial optimization problem based on the affinity matrix, which was then optimized by extending the GNCCP. This is a new second-order constraint graph matching algorithm. Compared with the existing algorithms, there are mainly three benefits for the proposed algorithm, which are as follows. Firstly, it has a flexible objective function formulation ; secondly, it is effective in graph matching problems with outliers ; thirdly, it is applicable on both directed graphs and undirected graphs. Simulations on both synthetic and real world datasets validate the effectiveness of the proposed method.

关 键 词:图匹配 组合优化 渐非凸渐凹化过程(GNCCP) 关键点对应 有向图 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象