检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《清华大学学报(自然科学版)》2015年第5期497-502,共6页Journal of Tsinghua University(Science and Technology)
基 金:国家"八六三"高技术项目(2012AA011004);清华大学自主科研计划项目(20111081023)
摘 要:随着在线用户生成内容的激增,无监督情感分类方法有着广泛应用前景。现有基于情感词的无监督情感分类方法没有考虑句子类型和句间关系对情感分类的影响,分类效果较差;基于自学习的无监督情感分类方法在生成伪标注数据集时,又会引入较多错误。针对上述问题,该文提出了一种基于多粒度计算和多准则融合的无监督情感分类方法。该方法通过多粒度计算,提高现有基于情感词的无监督情感分类精度;同时通过多准则融合来减少伪标注数据错误率。在3个真实中文数据集上的实验结果表明:与现有无监督情感分类方法相比,该方法平均提高了6.5%的分类精度。The large amount of online user-generated content on the Web has created a need for unsupervised sentiment classification methods.Unsupervised sentiment classification methods based on sentiment words do not work well because the complex sentence structures and sentence types are seldom taken into account.Unsupervised sentiment classification methods based on self-learning have many errors when generating pseudo-labelled datasets.These limitations are reduced by the current method based on multi-granularity computing and multi-criteria fusion. The multi-granularity computing improves the accuracy of unsupervised sentiment classification methods based on sentiment words.The multi-criteria fusion reduces the number of errors in the pseudo-labelled data from the self-learning.Tests using three real Chinese review datasets show that the classification accuracy is 6.5% more accurate on average than with existing unsupervised sentiment classification methods.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229