WTGS非线性动态模型的T-S模糊线性化  被引量:1

T-S Fuzzy Linearization for Nonlinear Dynamic Model of WTGS

在线阅读下载全文

作  者:胡阳[1] 刘吉臻[1] 林忠伟[1] 

机构地区:[1]华北电力大学新能源电力系统国家重点实验室,北京102206

出  处:《动力工程学报》2015年第8期632-638,共7页Journal of Chinese Society of Power Engineering

基  金:国家自然科学基金重点资助项目(51036002);中央高校基本科研业务费专项资金资助项目(13XS14);智能电网中大规模新能源电力安全高效利用基础研究(2012CB215203)

摘  要:针对变速变桨风力发电系统(WTGS)的非线性动态模型,采用Takagi-Sugneo(T-S)模糊建模理论处理其非线性,以得到高精度的线性形式控制设计模型.首先,提取代表WTGS变工况特性的外部参量作为变化参数,并理论抽象出一类仿射非线性参数变化(ANPV)模型,给出其齐次线性T-S模糊线性化步骤并得到线性参数变化(LPV)T-S模糊模型.然后,将上述方法应用于WTGS非线性动态模型的T-S模糊线性化.最后,针对WTGS的LPV T-S模糊模型对其非线性特性的逼近性能进行仿真验证.结果表明:通过改变T-S模糊模型前提变量输入空间的划分精度,可以有效调节LPV T-S模糊模型对WTGS非线性特性的逼近性能.For the nonlinear dynamic model of wind turbine generation system (WTGS) with variable-speed variable-pitch (VSVP) techniques, the Takagi-Sugeno (T-S) fuzzy modeling theory was adopted to deal with its nonlinearity to obtain the control design model with high accuracy in linear form. Firstly, the ex- ternal variables representing the variable condition characteristics of WTGS were extracted as the varying parameters and a class of affine nonlinear parameter varying (ANPV) model was abstracted theoretically. Subsequently, a kind of homogeneous linear Takagi-Sugeno (T-S) fuzzy modeling procedure was applied on ANPV model and the linear parameter varying (LPV) T-S fuzzy model was obtained. Then, the nonlinear dynamic model of WTGS can be dealt with using above T-S fuzzy linearization approaches. Finally, simulations were conducted to demonstrate the approximation performance of the LPV T-S fuzzy model about the nonlinearity of WTGS. Results show that the approximation accuracy of LPV T-S fuzzy model to the nonlinearity of WTGS can be efficiently adjusted by changing the input space partitioning of the premise variables.

关 键 词:风力发电 非线性过程 LPV系统 增益调度控制 

分 类 号:TK89[动力工程及工程热物理—流体机械及工程] TP29[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象