采用模拟退火算法的电动汽车复合电源能量管理系统优化  被引量:21

Optimization of Energy Management System with Simulated Annealing Approach for Hybrid Power Source in Electric Vehicles

在线阅读下载全文

作  者:王斌[1] 徐俊[1] 曹秉刚[1] 续丹[1] 邹忠月[1] 

机构地区:[1]西安交通大学机械制造系统工程国家重点实验室,西安710049

出  处:《西安交通大学学报》2015年第8期90-96,共7页Journal of Xi'an Jiaotong University

基  金:国家自然科学基金资助项目(51405374)

摘  要:针对电动汽车的混合式复合电源工作模式切换复杂、不利于不同工作模式的功率最优分配问题,提出基于模拟退火算法的复合电源能量管理优化方法。对混合式复合电源的工作模式进行分层讨论,建立能量管理系统的各部件损耗模型,基于不同层次设计能量管理策略。在分层能量管理策略的基础上,采用模拟退火算法降低系统的损耗。搭建混合式复合电源仿真模型和实验台进行仿真和实验。仿真和实验结果表明:在NYCC和EUDC路况下,混合式复合电源能量管理系统采用模拟退火算法优化比滞环逻辑控制的总损耗降低0.8%和1.1%。混合式复合电源能量管理系统采用模拟退火算法不仅能有效降低系统损耗,实现功率最优分配,而且能及时跟随功率需求,由超级电容提供或吸收峰值功率,保证电池安全。An optimization method based on simulated annealing (SA) approach for the energy management of the compound-type hybrid power source (CHPS) is proposed to focus on the operating modes of CHPS and the optimization of power distributions in different operating modes. The operating modes of the CHPS are divided into different layers, and loss models of different components are established for the energy management system. Energy management strategies are designed for different layers. The SA approach is used to reduce the system loss on the basis of the energy management strategies in different layers. A simulation model and an experimental platform of the CHPS are constructed. Experimental results and comparisons with the hysteresis-logic threshold control strategy show that the total system loss of the CHPS using the proposed method reduces 0. 8% and 1. 1% , respectively, in the NYCC and EUDC drive cycles. It can be concluded that the proposed energy management system of the CHPS reduces the system loss and realizes the optimization of power distributions. Moreover, the CHPS can respond to the power demands, provide or absorb peak powers by ultracapacitor (UC), and ensures the safety of batteries.

关 键 词:电动汽车 复合电源 模拟退火算法 能量管理系统 

分 类 号:U469.72[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象