检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北大学工商学院,河北保定071002 [2]河北大学电子信息工程学院,河北保定071000
出 处:《电子学报》2015年第7期1356-1361,共6页Acta Electronica Sinica
基 金:国家自然基金(No.61073121);河北省自然基金(No.F2013201170);国家科技支撑计划(No.2013BAK07B04);河北省高等学校科学技术研究重点项目(No.ZD2014008);河北大学青年基金(No.2010Q17)
摘 要:现有的概念漂移算法大多建立在数据流的分类模型上,忽略了特征空间与样本空间的分布特点,以及特征选择和加权的重要性.针对此问题提出了一种基于特征项分布的信息熵及特征动态加权算法,从概念漂移的动态演化性出发,根据样本和特征空间的拟合程度,运用特征信息熵理论对数据流中的概念漂移现象进行捕捉,以实现新旧概念的过渡.利用改进的隐含Dirichlet模型特征动态加权算法,以解决当前特征与历史特征的权重确定和无效特征的裁剪问题.在公开的语料库CCERT和Trec06上的测试实验证明了所提出算法的有效性.Most of the existing concept drift algorithm focuses on the classification model data streams,some of which overlook the distribution of the feature space and sample space,and the importance of feature selection and weighting.To solve this problem,we propose a dynamic information entropy and feature weighting algorithm based on the distribution of feature items from the dynamic evolution of the concept drift departure. To realize the concept transition,we capture the concept drifting of the data stream by the information entropy,according to the fitness degree between the sample and feature space. We improve the feature dynamic weighting latent dirichlet model,to overcome the problem of the current and historical feature weight assignment,as well as cropping the invalid features. Furthermore,the validity of the proposed algorithm was confirmed by the test in open corpus CCERT and Trec06.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30