检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邵华飞[1] 刘剑芳[1] 姚丽波[1] 刘戬[1] 屈东[1] 王铸[1]
机构地区:[1]北京协和医学院中国医学科学院肿瘤医院影像诊断科,北京100021
出 处:《放射学实践》2015年第8期835-837,共3页Radiologic Practice
基 金:国家自然科学基金资助项目(61372192)
摘 要:目的:利用Bayes判别分析初步建立诊断食管癌淋巴结转移的各种CT征象的联合诊断模型。方法:共搜集胸段食管癌208例,将其分为实验组即训练样本(166例,80%)及检验组即验证样本(42例,20%),实验组用以建立诊断方程,检验组用以验证方程。结果:经计算获得的方程为:Y0=-7.499X1+7.957X2+167.761X3-0.087X4+0.459X5-5.528X6-0.711X7-66.080,Y1=-6.697X1+8.231X2+181.686X3-0.106X4+2.219X5-3.331X6-0.124X7-83.183,其中Y0为非转移组,Y1为转移组,X1为淋巴结最大短径,X2为淋巴结最大长径,X3为横纵比,X4为最大截面积,X5为是否边缘模糊,X6为是否中央低密度,X7为是否成簇分布。利用自身检验法所得诊断模型的符合率为87.7%,误判率为12.3%,交叉检验法与自身检验法所得结果相近。当利用验证样本数据代入方程,所得模型诊断符合率为84.7%,误判率为15.3%。结论:通过Bayes判别分析法所建立的不同CT征象对食管癌淋巴结转移的联合诊断模型具有一定的诊断价值,但诊断模型还有待进一步完善。Objective:To construct mechanism model for the diagnosis of LNs (Lymph nodes metastasis)of esophageal cancer by Bayes discriminatory analysis.Methods:208 thoracic esophageal cancer cases were divided into two groups,inclu-ding training set (166 cases)and test set (42 cases).Training set was used to construct mechanism model,test set was used to analyze its value of diagnosis.Results:Non-metastatic LNs:Y0 = -7.499X1 +7.957X2 +167.761X3 -0.087X4 +0.459X5-5.528X6-0.711X7-66.080;metastatic LNs:Y1= -6.697X1+8.231X2+181.686X3-0.106X4+2.219X5-3.331X6-0.124X7-83.183.X1= short-axis diameter,X2= long-axis diameter,X3= aspect ratio,X4= cross-sectional area, X5= fuzzy rim,X6= cental low density area,X7= clustered distribution.The accuracy was 87.7%,the P (the probability of false prediction)was 12.3%,with similar result by cross validation.For the test set,the accuracy of Bayesian analysis was 84.7%,the P was 15.3%.Conclusion:It is feasible to use Bayes discriminatory analysis for diagnosis of LNs metastasis of esophageal cancer.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117