基于组合噪声调频信号的高速目标参数估计  被引量:1

Parameters estimation of high speed target based on component noise frequency modulation signal

在线阅读下载全文

作  者:王钊[1] 顾红[1] 苏卫民[1] 龚大辰 

机构地区:[1]南京理工大学电子工程与光电技术学院,江苏南京210094

出  处:《系统工程与电子技术》2015年第9期1953-1959,共7页Systems Engineering and Electronics

基  金:国家自然科学基金(61471198);部预研基金;教育部博士点基金(20113219110018);中国航天科技集团公司科技创新基金(CASC04-02)资助课题

摘  要:宽带噪声雷达参数估计时通常会采用宽带互模糊函数的方法,但是宽带互模糊函数庞大的运算量限制了其在实际工程中的应用,为此提出了一种基于组合噪声调频信号的高速目标参数估计方法。该方法首先将回波信号共轭自混频来抑制多普勒敏感,然后对自混频信号进行短时相关运算,并通过高斯拟合获得分段的时延精确解,最后利用最小二乘算法求得目标参数。该方法通过自混频过程获得的组合噪声调频信号具有更高的时延分辨力,提出的高斯拟合方法较经典的抛物线插值方法精度更高,整个算法无需宽带模糊函数所需的时域重构运算及二维搜索过程,运算复杂度大大降低,适用于实际工程应用。仿真结果验证了本文算法的有效性。The wideband cross-ambiguity function (WCAF) method is commonly adopted to execute the pa- rameter estimation of wideband noise radar,but the huge computation burden of this method limits its applica- tion in practical engineering. A novel method based on the component noise frequency modulation signal is pro- posed for addressing the problem of parameter estimation of high speed targets. Firstly, the Doppler sensitive is eliminated through conjugate self-mixing of the echo signal. Then the short time correlation is taken with the mixed signal and the accurate delay of each segment is obtained by the Gaussian fitting. Finally, the target pa- rameter is acquired through the least squares algorithm. In this method, the component noise frequency modula- tion signal generated by self-mixing has higher delay resolution, and the proposed Gaussian fitting method has higher accuracy than the classical parabola interpolation. In the whole algorithm, the time-domain reconstruc- tion and 2-D searching are not required as the WCAF does, which makes the algorithm complexity decrease greatly and the method suitable for the engineering application. The effectiveness of the proposed method is demonstrated by simulation results.

关 键 词:组合噪声调频 高斯拟合 最小二乘算法 时延分辨力 

分 类 号:TN957[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象