基于区域信息融合的风电场平均年发电量预测  被引量:4

Average Annual Energy Output Prediction Based on Regional Information Fusion

在线阅读下载全文

作  者:王娜[1] 邵霞[1] 高云鹏[1] 万全[2] 

机构地区:[1]湖南大学电气与信息工程学院,湖南长沙410082 [2]国网湖南省电力公司电力科学研究院,湖南长沙410007

出  处:《湖南大学学报(自然科学版)》2015年第8期81-85,共5页Journal of Hunan University:Natural Sciences

基  金:国家自然科学基金资助项目(51277055;51107035)~~

摘  要:备选风电场在寿命周期内的平均年发电量是风电场宏观选址的一个重要参考判据.为了提高风电场平均年发电量的预测精度,提出了一种基于风电场附近多个气象站长期测风数据的区域信息融合的平均年发电量预测方法.首先分别建立各气象站与风电场同期小时风速之间的相关模型,应用相关模型得到多个长期小时风速预测值,再用神经网络对长期小时风速预测值进行融合处理得出最终的小时风速预测值,在此基础上进行风电场平均年发电量的估算.仿真结果表明:本文提出的区域信息融合方法对年平均发电量的预测误差比采用单一气象站数据的预测误差最高可降低11.32%.Annual energy output of a candidate site in its life span is an important reference criterion of wind farm macro siting.A regional information fusion method,which allows the use of multiple reference wheather stations with a long history of wind speed and wind direction measurements,was proposed to im-prove the annual energy output prediction accuracy.Firstly,the correlation model was established between the short-term wind data of a single reference wheather station and the candidate wind farm,and the multi-ple long-term wind speeds of candidate site based on different reference stations were predicted by using the model.Then,the multiple prediction results were integrated by neural network to obtain the final long-term hourly wind speed data,and the annual energy output was subsequently determined on the basis of the knowledge of these wind speeds.The simulation results show that,by using the proposed method, the error reduction up to 1 1.32% has been achieved in the relative error of the average annual power out-put,with respect to the case of using a single reference wheather station method.

关 键 词:平均年发电量 测量-相关-预测 信息融合 神经网络 

分 类 号:TM315[电气工程—电机]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象