检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京数维翔图高新技术有限公司,北京100073
出 处:《测绘科学》2015年第8期22-27,共6页Science of Surveying and Mapping
摘 要:针对高维遥感数据的降维困难问题,该文提出并构建了一种融合粒子群优化算法全局寻优能力和支持向量机优秀分类性能的高光谱遥感影像特征子集选择与分类方法。通过引入混沌优化搜索技术改进融合粒子群优化算法的全局寻优能力;提出并采用一种基于粒度的网格搜索策略对支持向量机模型参数进行优化;利用二进制融合粒子群优化算法进行特征选择;然后,支持向量机采用该特征子集所对应的训练数据集进行模型参数优化和分类。实验结果表明该方法能有效地提取出用于分类的最佳波段,具有较高的分类精度。为高光谱遥感影像的特征选择与分类探索出了一种可行的方法。Aiming at the problem of dimensionality reduction of hyperspectral remote sensing data, in this paper, a novel feature selection and classification method for hyperspectral image by combining the global optimization ability of particle swarm optimization (PSO)algorithm and superior classification per- formance of support vector machine (SVM)was proposed. Global optimal search performance of PSO was improved by using chaotic optimal search technique. Granularity based grid search strategy was used to op- timize the SVM model parameters. Feature selection was carried out using binary PSO (BPSO). Parameters optimization and classification of SVM were addressed using the training date corresponding to the feature subset. Experimental results indicated this hybrid method had higher classification accuracy and could ef- fectively extract optimal bands. A feasible approach was provided for feature selection and classification of hyperspectral image data.
分 类 号:P231[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30