一种改进的LSA语音增强算法  

Improved LSA speech enhancement algorithm

在线阅读下载全文

作  者:王金明[1] 周坤[1] 尹海明[1] 徐志军[1] 

机构地区:[1]解放军理工大学通信工程学院,江苏南京210007

出  处:《解放军理工大学学报(自然科学版)》2015年第4期310-315,共6页Journal of PLA University of Science and Technology(Natural Science Edition)

摘  要:针对说话人识别的噪声鲁棒性问题,在对数谱最小均方差误差估计算法基础上,采用改进的最小值控制递归平均算法对语音帧信噪比进行估计,通过对前一帧的短时功率谱进行2次平滑和前向多帧最小值搜索,结合语音存在概率估计出当前帧的信噪比,并根据信噪比自适应调整增益因子的大小,对噪声进行消除。构建了一种改进的LSA语音增强方法,使用该方法可以使增强后的语音保持较高的自然度。实验结果表明,与MMSE-LSA算法比较,改进的LSA算法具有更好的语音增强效果,在5dB各类噪声环境下,其平均信噪比较MMSE-LSA算法提高1.36dB,主观语音质量评估平均提高8%。将该方法用于说话人识别系统,其检测代价较采用MMSE-LSA算法的系统平均降低3%。An improved In-spectral amplitude (LSA) speech enhancement method was proposed for robust speaker recognition. The LSA feature preserves the naturalness of speech and hence is more suitable for speaker recognition. However, the traditional minimum mean square error-ln-spectral amplitude(MMSE-LSA) method cannot adjust the gain factor according to input signal to noise ratio (SNR), thus often resuiting in performance degradation when SNR is low.A recursive averaging algorithm was proposed for estimating SNR of speech frame efficiently, thereby affording adaptive gain control of the speech enhancement system. The improved LSA speech enhancement method can output high fidelity speech signal and minimize the impact on the naturalness of speech signal. Experimental results show that under 5 dB noise, SNR of the new method's output is 1.36 dB better than that of the traditional MMSE-LSA, and perceptual evaluation of speech quality(PESQ) score rises 0.08 on average. The method is also applied to speaker recognition system and the detection cost score is about 3% lower than that of MMSE-LSA.

关 键 词:语音增强 短时对数谱 最小均方误差 信噪比 说话人识别 

分 类 号:TN912.34[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象