基于时频特征和PCA-KELM的液压系统故障诊断  被引量:11

Fault diagnosis of hydraulic system based on time-frequency characteristics and PCA-KELM

在线阅读下载全文

作  者:柴凯[1] 张梅军[1] 黄杰[1] 王振业[1] 

机构地区:[1]解放军理工大学野战工程学院,江苏南京210007

出  处:《解放军理工大学学报(自然科学版)》2015年第4期394-400,共7页Journal of PLA University of Science and Technology(Natural Science Edition)

基  金:国家自然科学基金资助项目(51175511)

摘  要:为了解决液压系统泄漏、堵塞和气穴等多类型故障下特征提取和模式识别困难的问题,提出基于时频特征和PCA-KELM的液压故障智能诊断新方法。首先利用统计分析和总体平均经验模态分解方法,构造高维混合域初始特征向量,从不同特征指标、不同分析角度对不同种类液压故障进行表征和刻画;然后通过主成分分析对多维初始特征向量进行降维和特征二次提取,将高维相关变量转化为低维独立的主特征向量;最后利用PCA主元构造的主特征向量输入核极限学习机网络中,实现故障类型的识别。实验结果表明,混合域初始特征向量能全面准确地描述故障特征,PCA提取的主特征向量摒弃了冗余信息且简化了分类器结构,KELM网络诊断速度快、分类准确率高。To tackle the different faults in hydraulic system, e.g. leakage, blockage, cavitation and so on, which it makes difficult to make feature extraction and mode recognition, a new fault diagnosis approach based on time-frequency characteristics and PCA-KELM was proposed. Firstly, high-dimensional mixed domain feature vectors were obtained by statistical analysis and ensemble empirical mode decomposition (EEMD) so as to describe different faults from various feature indexes and domains. Then, principle component analysis (PCA) was used to reduce the dimensionality of feature vectors, which turns high-dimensional variables into low-dimensional variables. Finally, these final features were input into kernel extreme learning machine (KELM) to identify faults. The results show that the fault characteristics are described comprehensively and accurately by mixed domain feature vectors. PCA can eliminate superfluous data and simplify classifier structure. KELM can increase diagnosis speed and meet the recognition rate requirement.

关 键 词:时频特征 液压系统 主成分分析 核极限学习机 故障诊断 

分 类 号:TP206.3[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象