检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华东理工大学化工过程先进控制和优化技术教育部重点实验室,上海200237
出 处:《华东理工大学学报(自然科学版)》2015年第4期523-528,共6页Journal of East China University of Science and Technology
基 金:国家自然科学基金(61104178;61174040);上海市科委基础研究重点项目(12JC1403400);中央高校基本科研业务费专项基金
摘 要:实际作业车间调度中多目标的动态优化更符合生产的需求。利用多目标优化问题的Pareto解集思想构建最大完工时间最小以及总拖期时间最小的数学模型,以事件驱动作为动态调度策略实现作业车间的动态调度。采用多目标蚁群算法优化启发式算法,并对算法的转移概率及全局信息素更新进行改进,加快算法的搜索收敛速度同时避免陷入局部最优。仿真实验证明,改进后的算法能实现Pareto前沿较好的均匀性与分布性,对双目标调度以及单个目标独自调度时的甘特图对比,表明双目标优化算法能更好地平衡各个目标的解。最后对急件插入以及机器故障两种动态事件进行仿真,验证了改进蚁群算法在实际动态调度中有较好的实现。The dynamic multi-objective optimization problem has more application in the practical job shop scheduling. This paper uses the Pareto solution of the multi-objective optimization to construct the model of the maximum completion time minimum and minimum total drag time. Then the event-driven strategy is utilized to realize the dynamic scheduling. By using the multi-objective ant colony algorithm as the optimization methods and improving the transition probability and global pheromone updating, the proposed algorithm can speed up the searching and avoid falling into local optimum. Moreover, the simulation results show that the improved algorithm can achieve better Pareto front. Compared with the Gantt chart of the multi-objective and single target scheduling, the multi-objective optimization can attain better balance among various targets. Finally, the simulations on two dynamic events show that the improved ant colony algorithm can achieve better performance in actual dynamic scheduling.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.85.3