检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]山东协和学院,济南250017
出 处:《价值工程》2015年第27期136-138,共3页Value Engineering
基 金:基于BP神经网络的液压系统状态质量评估(XHXY201401)
摘 要:液压设备的结构越来越复杂,发生故障的几率也随之增多,故障造成的危害和损失也更加严重。为便于及早地发现问题,解决隐患,避免重大事故的发生要对设备日常使用状态进行监测,对其质量进行评估。本文分析了质量评估方法中人工神经网络方法的优点及使用特点,针对某大型设备的液压系统,建立了基于神经网络的评估模型,为其液压系统设计了一个状态分类器,来检测液压系统的日常使用状态,避免事故的发生。The structure of the hydraulic equipment is more and more complex, also increases the probability of failure, damage and loss caused by fault is also more serious. To facilitate as soon as possible to find problems, solve the hidden trouble, avoid the occurrence of major accidents for daily use status monitoring equipment, it is necessary to evaluate its quality. This paper analyzed the advantage of artificial neural network method in the quality evaluation methods and characteristics of the use, in a space towers slewing platform hydraulic system, established the evaluation model based on neural network, designed a state classifier for the hydraulic system, to detect the state of daily use of the hydraulic system and avoid accidents.
分 类 号:TP271.2[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.187