检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁工程技术大学矿业学院,辽宁阜新123000
出 处:《计算机工程与应用》2015年第16期1-5,54,共6页Computer Engineering and Applications
基 金:国家自然科学基金项目(No.51004063);辽宁省高等学校优秀人才支持计划(辽宁省教育厅;No.LJQ2011029)
摘 要:为准确、快速地预测回采工作面瓦斯涌出量,提出一种基于主成分分析法(PCA)和改进的果蝇算法(MFOA)优化支持向量机(SVM)的回采工作面绝对瓦斯涌出量预测模型。模型首先运用PCA方法对原始数据进行降维处理,消除数据冗余,而后采用改进的果蝇算法对SVM参数进行全局寻优,避免SVM参数的选取对模型预测结果的不利影响,最终建立基于PCA-MFOA-SVM的耦合预测模型,并以实际监测数据为例进行仿真预测。结果表明:该模型预测的平均绝对误差为0.077 5 m3/t,平均相对误差为1.323 7%,与其他模型相比,预测精度高,综合性能好,能够实现回采工作面瓦斯涌出量的动态预测。In order to predict the gas emission of working face accurately and quickly,a prediction model for gas emission of working face is put forward based on Principal Component Analysis(PCA),Modified Fruit Fly Optimization Algorithm(MFOA)and optimized Support Vector Machine(SVM).PCA is used for dimensionality reduction of original data,eliminating data redundancy,MFOA is used to optimize SVM parameters,avoids the negative impact of the model prediction results affected by selection of SVM parameters.Eventually,coupling prediction model is established based on PCA-MFOA-SVM,and simulation forecast is done as example by taking actual monitoring data.Results show that the mean absolute error of this model prediction is 0.077 5 m3/t,the mean relative error is 1.323 7%.Comparing with other models this model can realize the dynamic prediction of gas emission in the working face with its higher prediction accuracy and better comprehensive performance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40