检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国地质大学(武汉)信息工程学院,武汉430074
出 处:《计算机工程与应用》2015年第16期171-177,共7页Computer Engineering and Applications
基 金:中央高校基本科研业务费专项资金资助项目(No.CUGL120267)
摘 要:针对高光谱遥感影像分类的并行化处理,现有研究一般是通过集群和工作站来开展,成本较高,部署困难。少数基于GPU方式的研究主要是从流程的角度来论证该并行架构对提高算法效率的有效性,对于算法关键的存储器优化策略等研究相对较少或不详细。针对现有研究的不足,以CUDA架构下高光谱遥感影像的光谱波形匹配法和光谱角填图法分类的高性能计算为例,对算法存储优化策略进行重点研究,深入探讨了一系列存储优化及其改进方法。通过实验论证分析表明:存储优化策略及其改进方法有效,并且对于多种不同尺寸与数据量的影像,CUDA架构下算法的运行效率都有了较为显著的提升。同时,基于CUDA的高光谱影像分类维护了计算结果的准确性。Aiming at the parallel processing of remote sensing image classification,the existing researches are generally carried out through computer cluster and workstation.These ways have the disadvantage of high cost and are difficult to establish.Only a few researches which are based on GPU mainly intend to demonstrate the availability of this parallel architecture from the perspective of workflow and pay little attention to the significant storage optimization strategies.Directed against the shortages of the existing studies,taking the high performance computing of hyperspectral image classification using the method of spectrum waveform matching and spectral angle mapping based on CUDA for example,this paper places emphasis on researching the optimization strategies of GPU storage and their improvement method.The experimental results show that,the optimization strategies of GPU storage and their improvements are effective,besides,for a variety of images of different sizes and data volume,the efficiency of algorithm has been promoted remarkably compared with the situation before these strategies are applied.At the same time,The hyperspectral image classification based on CUDA acquires accurate computing results.
关 键 词:CUDA架构 高光谱遥感影像 光谱角填图 常量存储器 共享存储器 存储器合并访问
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15