检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘秀丽[1]
出 处:《中北大学学报(自然科学版)》2015年第4期408-411,共4页Journal of North University of China(Natural Science Edition)
基 金:山东省自然科学基金资助项目(ZR2011AL018);山东省高校科技计划资助项目(J13LI02)
摘 要:研究了Pn,Fn和Sn图的Mycielski图的邻点可区别的I-全染色.图G的邻点可区别的I-全染色是从G的点边集V(G)∪E(G)到色集{1,2,…,k}的一个映射f,满足:任意uv∈E(G),u≠v,有f(u)≠f(v);任意uv,uw∈E(G),v≠w,有f(uv)≠f(uw);任意uv∈E(G),u≠v,有C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.最小的k值称为图G的邻点可区别的I-全色数,记作χiat(G).根据图M(Pn),M(Fn)和M(Sn)的构造特征,利用构造函数法,构造了一个从点边集V(G)∪E(G)到色集合{1,2,…,k}的函数,给出了一种染色方案,得到了M(Pn),M(Fn)和M(Sn)图的邻点可区别的I-全色数,并且满足猜想.Adjacent vertex-distinguishing I-total coloring of Mycielski graphs of graphs Pn,Fn and Sn were studied.Adjacent vertex-distinguishing I-total coloring of graph G was an map ffrom the vertices and edges set V(G)∪E(G)to the color set{1,2,…,k},such that:f(u)≠f(v)for any uv∈E(G),u≠v;f(uv)≠f(uw)for any uv,uw ∈E(G),v≠w;C(u)≠C(v)for any uv∈E(G),u≠v,and C(u)={f(u)∪f(uv)|uv∈E(G).The minimum of k was called the adjacent vertex-distinguishing I-total chromatic number and denoted byχiat(G).By constructing the function from the vertices and edges set V(G)∪E(G)to the color set{1,2,…,k},a new coloring method is given according to the feature of graphs M(Pn),M(Fn)and M(Sn),and the adjacent vertex-distinguishing I-total chromatic number of them are obtained,which meet the suspect.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28