基于R-滤子的多帧图像重建算法  

Multi-frame image reconstruction algorithm based on R-filters

在线阅读下载全文

作  者:何易德 秦小林[1] 罗国涛[2] 陈帅[1] 

机构地区:[1]中国科学院成都计算机应用研究所,成都610041 [2]四川托普信息技术职业学院计算机学院,成都611743

出  处:《计算机工程与应用》2015年第17期194-198,共5页Computer Engineering and Applications

基  金:中国科学院"西部之光"人才培养计划联合学者项目(No.[2011]);国家973项目(No.2011CB302402);国家自然科学基金重点项目(No.91118001)

摘  要:针对图像重建中低分辨率图像信息的利用和先验项(正则化项)的估计问题,提出一种新颖的算法——R-滤子方法,通过计算输入图像的高阶信息来构建先验项,同时采用广义交叉验证(Generalized Cross Validation,GCV)方法自适应求解先验项参数(正则化参数),加强算法的自适应性。实验结果表明:重建图像的峰值信噪比值(Peak Signal-to-Noise Ratio,PSNR)比目前主要先验项方法(BTV、Sparse、Huber)的重建图像的值更高,从重建图像的局部细节和纹理也看出该方法的重建图像具有更丰富的信息,同时,从构造方法上说明R-滤子方法在计算上要优于其他方法。In image reconstruction, making full use of low-resolution images and estimation prior is an important issue.This paper proposes a novel algorithm, using R-filters method, through calculating the high-level information of image and building prior term. At the same time, it takes advantage of the Generalized Cross-Validation(GCV)to solve adaptive regularization parameter, strengthens adaptivity of the algorithm. Result shows that compared to the current main reconstruction algorithm(BTV, Sparse, Huber), the Peak Signal-to-Noise Ratio(PSNR)of images is higher than others and details are also richer, also from the construction it shows R-filter is superior than others.

关 键 词:图像重建 R-滤子 广义交叉验证(GCV) 自适应参数 先验项 峰值信噪比值(PSNR) 

分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象