检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京工业大学电子信息与控制工程学院,北京100124
出 处:《兵工自动化》2015年第8期37-40,共4页Ordnance Industry Automation
摘 要:为有效提高Mean Shift算法的模板匹配精确度,采用基于特征贡献度的Mean Shift目标跟踪方法,对不同贡献度的特征向量赋予不同的权重,以彰显目标特征、抑制背景因素。分别介绍传统Mean Shift目标跟踪算法和基于特征贡献度的Mean Shift算法,并针对多组视频进行实验验证与分析。结果表明:改进后的Mean Shift算法不仅能提高跟踪精度、提升系统的鲁棒性,而且对640 pixel×480 pixel大小的视频处理平均帧速度为22 frames/s,满足实时跟踪要求。To improve template matching accuracy of the Mean Shift framework, we proposed Mean Shift target tracking based on feature contribution. The feature vectors of different contributions are endowed with different weights to highlight the target feature and the background factor. Mean Shift target tracking algorithm and Mean Shift algorithm based on feature contribution are introduced, and the experimental verification and analysis for multi group video are presented. Result shows that the improved Mean Shift algorithm not only improve tracking accuracy, enhanced system robustness, but also maintained an average processing speed as 22 frames/s for a video sized as 640 pixel × 480pixel, meet the requirements of real-time tracking.
关 键 词:Mean SHIFT 特征贡献度 模板匹配 核直方图 特征提取
分 类 号:TP391.9[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.220.9