检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张彪[1] 韩伟[1] 庞海玉[1] 薛芳[1] 厚磊[1] 王子兴[1] 王钰嫣 姜晶梅[1]
机构地区:[1]中国医学科学院基础医学研究所,北京协和医学院基础学院流行病学与卫生统计学系,100005
出 处:《中国卫生统计》2015年第4期605-608,612,共5页Chinese Journal of Health Statistics
摘 要:目的探讨完全随机缺失条件下连续型随机变量数据缺失对研究结果的影响,对各方法插补效果进行比较。方法基于上海地区35岁及以上吸烟人群吸烟与肺癌死亡关系的完整数据集,在5%、10%、20%及30%缺失率下,模拟单变量(吸烟年数sy)缺失,采用了7种方法处理单变量缺失;模拟多变量(吸烟年数sy和每天吸烟支数smd)缺失,采用了4种方法处理多变量缺失。对插补效果从缺失变量均值的变化、插补精确性及插补后模型参数的变化三个方面进行评价。结果单变量缺失:各缺失率下,回归插补sy均值的偏差最小,MI/REG、MI/PMM和MI/MCMC插补后模型参数的偏差均较小,删除法sy均值与模型参数的偏差均最大。多变量缺失:各缺失率下,回归插补sy均值的偏差最小,删除法最大;条件均值插补smd均值的偏差最小,MI/MCMC最大;条件均值插补模型参数的偏差最小,MI/MCMC最大。结论用不同指标对各方法插补效果进行评价会得出不同的结果,应根据统计分析的目的和关注点选择最合适的缺失数据处理方法。总体来看,插补法处理缺失数据的效果优于删除法,缺失率越高,优势越显著。
分 类 号:R195.1[医药卫生—卫生统计学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.1.194