检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]汕头大学工学院广东省数字信号与图像处理技术重点实验室,广东汕头515063
出 处:《汕头大学学报(自然科学版)》2015年第3期3-17,2,共15页Journal of Shantou University:Natural Science Edition
基 金:国家自然科学基金资助项目(61175073);粤东数控一代创新应用综合服务平台(2013B011304002)
摘 要:为了避免约束多目标进化算法陷入局部最优,提出了一种新的边界修补算子.该边界修复算子受到反向学习的启发,把违法盒型约束的解修复到其对应的反向可行边界,以增强约束多目标进化算法的多样性.为了验证所提的修补算子的有效性,在经典的约束多目标基准测试问题CTP2-CTP8上进行了实验仿真,仿真的结果表明所提出的新型的修补算子在多样性和收敛性上均优于现有的边界修补算子.为了进一步验证所提出的新型修补算子,设计了一组约束多目标优化问题MCOP1-MCOP7,作为CTP测试问题的有效补充.在MCOP1-MCOP7上的仿真结果同样表明,所提出的新型边界修补算子同时在收敛性和多样性上要优于现有的修补算子.In order to avoid falling into local optimum for constrained multi-objective evolutionary algorithm, we design a new repair operator which employs a reversed correction strategy to fix the solutions that violate the boxconstraint. This repair operator inspired by the concept of opposition-based learning. It fixes the infeasible solution that violates the box-constraint to its reversed feasible boundary, so that it can help to increase the diversity of constrained multi-objective evolutionary algorithm. We test the proposed repair operators and other existing repair operators in the framework of MOEA/D on CTP2 to CTP8 instances, the experimental results validate the proposed repair operator is better than existing repair operators in terms of both convergence and diversity. To further demonstrate the performance of proposed repair operator, we design a set of multi-objective constrained optimization problems named MCOP1 to MCOP7, as a complement of CTP benchmark test problems. The test results on MCOP1 to MCOP7 also show that the proposed repair operator is better than existing repair operators.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31