检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈小雕[1] 段晓慧[1] 杨超[1] 王毅刚[2]
机构地区:[1]杭州电子科技大学计算机学院,杭州310018 [2]杭州电子科技大学数字媒体与艺术设计学院,杭州310018
出 处:《计算机辅助设计与图形学学报》2015年第9期1648-1652,共5页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(61003194;61370218)
摘 要:当2条曲线重合或几乎重合时,基于曲线分裂的求交算法或因为过多次数的分裂而导致内存不足而系统奔溃,或最后的计算结果因分裂次数的不足而未能满足精度要求.2条曲线重合检测技术可以帮助求交算法来避开上述问题.本文以2条有理三次Bézier曲线为例,提出并证明了重合检测基于曲线控制多边形的如下判定方法,即2条有理三次Bézier曲线重合的条件为或者两条曲线退化为同一条一或二次的曲线,或者在首末权因子为1的限制下,2条曲线的控制多边形重合且对应的权因子相等.当2条曲线部分重合时,本文给出了简便的方法来确定相应的重合位置,从而将部分重合的判定问题转化为完全重合的判定问题.实例表明了本文方法的正确性及简单有效性.When two curves are coincident or almost coincident, the corresponding intersection algorithm based on curve splitting will either run out of memory and lead to system crash because of too many times of divi-sion, or the final results can not meet the accuracy requirement due to insufficient divisions. Taking two ra-tional cubic Bézier curves for instance, this paper proposes and proves the coincidence condition based on the two control polygons. Firstly, it judges whether or not the two Bézier curves can be degenerated into ra-tional Bézier curves of degree 1 or 2. If both of the two curves are not degenerated, they are represented in the form that their first and last weights are equal to 1; and then deciding whether their control polygons are coincident and their corresponding weights are the same. Finally, it discusses the coincidence condition that two rational cubic Bézier curves are partially coincident, and gives a simple method to determine the corre-sponding coincidence position, which converts the partially coincidence detection problem into the complete coincidence detection. Numerical examples demonstrate the effectiveness and validity of the proposed algo-rithm.
关 键 词:有理三次Bézier曲线 完全重合条件 控制多边形 部分重合条件
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.219.46