Heavy Cycles in 2-connected Triangle-free Weighted Graphs  

Heavy Cycles in 2-connected Triangle-free Weighted Graphs

在线阅读下载全文

作  者:Xue Zheng LV Pei WANG 

机构地区:[1]Department of Mathematics, Renmin University of China [2]Department of Mathematics and Physics, China University of Petroleum

出  处:《Acta Mathematica Sinica,English Series》2015年第10期1555-1562,共8页数学学报(英文版)

基  金:Supported by National Natural Science Foundation of China(Grant No.11001269)

摘  要:A weighted graph is one in which every edge e is assigned a nonnegative number, called the weight of e. The sum of the weights of the edges incident with a vertex v is called the weighted degree of v, denoted by dw(v). The weight of a cycle is defined as the sum of the weights of its edges. Fujisawa proved that if G is a 2-connected triangle-free weighted graph such that the minimum weighted degree of G is at least d, then G contains a cycle of weight at least 2d. In this paper, we proved that if G is a 2-connected triangle-free weighted graph of even size such that dw(u) + dw(v) ≥ 2d holds for any pair of nonadjacent vertices u, v ∈ V(G), then G contains a cycle of weight at least 2d.A weighted graph is one in which every edge e is assigned a nonnegative number, called the weight of e. The sum of the weights of the edges incident with a vertex v is called the weighted degree of v, denoted by dw(v). The weight of a cycle is defined as the sum of the weights of its edges. Fujisawa proved that if G is a 2-connected triangle-free weighted graph such that the minimum weighted degree of G is at least d, then G contains a cycle of weight at least 2d. In this paper, we proved that if G is a 2-connected triangle-free weighted graph of even size such that dw(u) + dw(v) ≥ 2d holds for any pair of nonadjacent vertices u, v ∈ V(G), then G contains a cycle of weight at least 2d.

关 键 词:Heavy cycles triangle-free graphs weighted graphs 

分 类 号:O157.5[理学—数学] TP311.13[理学—基础数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象