检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华北电力大学工程技术与管理研究所,北京102206
出 处:《系统工程理论与实践》2015年第9期2364-2369,共6页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(71171081);国家教育部新世纪优秀人才项目(NCET-11-0633)
摘 要:多变量耦合问题的存在给大型电力工程项目实施状态的宏观分析与决策带来极为不利的影响.针对这一问题,本文首先对系统多变量在工程项目实施状态变化过程中的耦合机理进行了数理分析与描述,并建立和确定了能够有效反映系统多态多变量耦合结果的泛性方程.然后,通过对该方程的分解性分析,发现了求解系统多变量耦合问题的两个关键参数.通过包含多变量耦合结果泛性方程的拉氏变换以及与能够有效表达工程实际管理需求且含有系统期望配置极点参数的拉氏方程之对比,获得了这两个参数的解,并在此基础上给出了能够有效解决系统多变量耦合问题的拉氏解径.工程实证结果表明,该方法在分析和处理系统多变量耦合问题方面不仅可行有效,而且精度很高.Multi-variable coupling problems bring disadvantageous affection to macro-analyzing and decision-making of large-scale electric power engineering project implement states. In the paper, firstly, system multivariable coupling mechanism of engineering project implementation status is mathematically analyzed and described, and the universal equation which includes multi-variable coupling results is set up and determined. Then, two key parameters to solve multi-variable coupling problems are found by disassembly analyzing the universal equation. Through comparing Laplace equation which includes system configuration points and can describe engineering management requirement with Laplace transformation equation which contains system multi-variable coupling result, the two key parameters are solved. Mean- while, Laplace solution program of multi-variable coupling problem is put forward. Finally, real engineering examples prove that the Laplace solution program not only is availability, but also has higher precision.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38