基于项权值变化的矩阵加权关联规则挖掘  被引量:9

Matrix-weighted association rules mining based on dynamic weight of item

在线阅读下载全文

作  者:周秀梅[1] 黄名选[2] 

机构地区:[1]南宁地区教育学院数学与计算机科学系,广西崇左532200 [2]广西财经学院信息与统计学院,南宁530003

出  处:《计算机应用研究》2015年第10期2918-2923,2929,共7页Application Research of Computers

基  金:国家自然科学基金资助项目(61262028;61363037);广西自然科学基金资助项目(2012GXNSFAA053235);广西财经学院数量经济学创新团队资助项目(2014CX01);广西教育厅科研项目(201203YB225;2013LX236;KY2015YB483);广西高校优秀人才计划资助项目(桂教人[2011]40号)

摘  要:提出一种矩阵加权关联模式支持度计算方法及其相关定理,给出矩阵加权项集剪枝策略,基于该剪枝策略提出一种基于项权值变化的矩阵加权关联规则挖掘算法MWAR-Miner(matrix-weighted association rules-miner)。该算法克服现有的项无加权和项权值固定条件下挖掘关联规则的缺陷,采用新的剪枝技术和模式支持度计算方法挖掘有效的矩阵加权关联规则,避免无效的和无趣的模式产生。以中文数据集CWT200g和英文数据集NTCIR-5为实验数据,理论分析和实验结果表明,与现有矩阵加权模式挖掘算法和基于无加权的挖掘算法比较,该算法挖掘的候选项集数量和挖掘时间明显减少,挖掘效率得到极大提高。This paper introduced a new computing method for support of matrix-weighted association patterns and the related theorems firstly, and then presented a new pruning strategy for matrix-weighted itemsets. Finally it proposed a novel algorithm of matrix-weighted association rules mining based on dynamic weight of item, MWAR-Miner( matrix-weighted association rulesminer). Overcoming the defects of the traditional mining methods, this algorithm adopted the new pruning means of itemsets and computing method of itemset support so as to discover valid matrix-weighted association rules, which could avoid the generation of ineffective and uninteresting patterns. Based on Chinese dataset CWT200g and English dataset NTCIR-5 for the experimental data, the theoretical analysis and experimental results show that the MWAR-Miner can evidently reduce mining time and the number of candidate itemsets compared with the existing mining algorithms based on matrix-weighted itemsets and unweighted item. In addition, its mining is more efficient than the available algorithms for comparison.

关 键 词:文本挖掘 矩阵加权关联规则 频繁项集 知识发现 

分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象