瞬态传热问题的微分求积和精细积分求解方法  被引量:1

Application of differential quadrature and precise integration methods in analysis of transient heat transfer

在线阅读下载全文

作  者:金晶[1] 邢誉峰[2] 廖选平 张海瑞[1,3] 唐念华[1] 

机构地区:[1]中国运载火箭技术研究院,北京100076 [2]北京航空航天大学航空科学与工程学院,北京100191 [3]国防科学技术大学航天科学与工程学院,长沙410073

出  处:《北京航空航天大学学报》2015年第8期1526-1531,共6页Journal of Beijing University of Aeronautics and Astronautics

摘  要:给出了瞬态传热问题的高效高精度求解方法,该方法分别用微分求积法(DQM)和精细积分法(PIM)离散空间域和时间域.微分求积方法除了精度高、效率高之外,处理复杂边界条件的灵活性也优于有限元法(FEM).用精细积分法处理一阶瞬态传热微分控制方程,不需要增加额外自由度,还可以达到计算机精度.给出了隔热结构4种边界条件下的数值结果.并就上表面恒温、其他面绝热边界条件计算结果与有限元分析结果进行了对比,算例分析表明,采用微分求积和精细积分法布置少量的节点就可以达到较高的精度.An accurate and efficient solution method of the governing equation of transient heat transfer was proposed based on the differential quadrature method (DQM) and precise integration method (PIM). DQM was applied to discretize spatial domain while PIM to temporal domain. It has been shown that DQM, with high accuracy and efficiency, also had higher flexibility than the finite element method (FEM) while dealing with complicated boundary conditions. The transient heat transfer is governed by the first-order differential equation with respect to time, while applying precise integration method in temporal domain, the same accuracy as computer can be achieved without increasing additional degrees of freedom. Numerical results were given for four kinds of boundary conditions of thermal protection structure. Then, the numerical result of the structure with constant temperature on top surface and heat insulation on other surfaces was compared with the result using the FEM. The numerical examples analysis shows that the higher precision can be achieved with fewer nodes by DQM and PIM.

关 键 词:微分求积法(DQM) 精细积分法(PIM) 瞬态传热问题 有限元法(FEM) 时间域 空间域 

分 类 号:O241.81[理学—计算数学] O321[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象