Regulatory Micro RNA Networks:Complex Patterns of Target Pathways for Disease-related and Housekeeping MicroRNAs  

Regulatory Micro RNA Networks:Complex Patterns of Target Pathways for Disease-related and Housekeeping MicroRNAs

在线阅读下载全文

作  者:Sachli Zafari Christina Backes Petra Leidinger Eckart Meese Andreas Keller 

机构地区:[1]Chair for Clinical Bioinformatics,Saarland University,University Hospital [2]Department of Human Genetics,Saarland University,University Hospital

出  处:《Genomics, Proteomics & Bioinformatics》2015年第3期159-168,共10页基因组蛋白质组与生物信息学报(英文版)

基  金:funded by the European Union (FP7 Best Ageing,6031);Saarland University,Medical Faculty.Authors acknowledge the contribution of Comprehensive Biomarker Center (CBC),Heidelberg,in funding the study

摘  要:Blood-based mieroRNA (miRNA) signatures as biomarkers have been reported for various pathologies, including cancer, neurological disorders, cardiovascular diseases, and also infections. The regulatory mechanism behind respective miRNA patterns is only partially understood. Moreover, "preserved" miRNAs, i.e., miRNAs that are not dysregulated in any disease, and their biological impact have been explored to a very limited extent. We set out to systematically determine their role in regulatory networks by defining groups of highly-dysregulated miRNAs that contribute to a disease signature as opposed to preserved housekeeping miRNAs. We further determined preferential targets and pathways of both dysregulated and preserved miRNAs by computing multi-layer networks, which were compared between housekeeping and dysregulated miRNAs. Of 848 miRNAs examined across 1049 blood samples, 8 potential housekeepers showed very limited expression variations, while 20 miRNAs showed highly-dysregulated expression throughout the investigated blood samples. Our approach provides important insights into miRNAs and their role in regulatory networks. The methodology can be applied to systematically investigate the differences in target genes and pathways of arbitrary miRNA sets.Blood-based mieroRNA (miRNA) signatures as biomarkers have been reported for various pathologies, including cancer, neurological disorders, cardiovascular diseases, and also infections. The regulatory mechanism behind respective miRNA patterns is only partially understood. Moreover, "preserved" miRNAs, i.e., miRNAs that are not dysregulated in any disease, and their biological impact have been explored to a very limited extent. We set out to systematically determine their role in regulatory networks by defining groups of highly-dysregulated miRNAs that contribute to a disease signature as opposed to preserved housekeeping miRNAs. We further determined preferential targets and pathways of both dysregulated and preserved miRNAs by computing multi-layer networks, which were compared between housekeeping and dysregulated miRNAs. Of 848 miRNAs examined across 1049 blood samples, 8 potential housekeepers showed very limited expression variations, while 20 miRNAs showed highly-dysregulated expression throughout the investigated blood samples. Our approach provides important insights into miRNAs and their role in regulatory networks. The methodology can be applied to systematically investigate the differences in target genes and pathways of arbitrary miRNA sets.

关 键 词:MIRNA miRNA targeting Systems biology Regulatory networks miRNA housekeepers 

分 类 号:R363[医药卫生—病理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象