基于共生特性的G.729A基音调制信息隐藏的检测  

G.729A Pitch Modulation Information Hiding Detection Based on Symbiotic Characteristics

在线阅读下载全文

作  者:贾已真 李松斌[2] 蒋雨欣 戴琼兴[2] 邓浩江 

机构地区:[1]海南大学信息科学技术学院,海南海口570228 [2]中国科学院声学研究所南海研究站,海南海口570105 [3]国家网络新媒体工程技术研究中心,北京100190

出  处:《电子学报》2015年第8期1513-1517,共5页Acta Electronica Sinica

基  金:国家自然科学基金(No.61303249);海南省自然科学基金(No.614236);海南省重大科技项目课题(No.JDJS2013006)

摘  要:提出了一种G.729A自适应码本分组基音调制信息隐藏的检测算法.对语音码流的分析发现,通过基音预测进行信息隐藏将改变相邻语音帧中基音周期估计值的共生特性.通过量化这种共生特性,并经过PCA(Principal Component Analysis,主成分分析)降维获得对隐写检测敏感的特征向量.最后基于特征向量和SVM(Support Vector Machine,支持向量机)构建隐写检测器.对不同语音样本数据集的检测表明,当语音长度在2s及以上时,检测正确率均超过96%.此检测算法是一种有效的压缩域信息隐藏检测方法.A detection algorithm of pitch modulation information hiding in G. 729A low bit-rate speech codec is proposed. The analysis of speech stream showed that pith modulation information biding would change the pitch symbiotic characteristics of adjacent speech frames. We designed a model to quantify these pitch symbiotic characteristics for steganalysis. However, the dimension of quantitative feature vector of pitch symbiotic characteristics was too bigh,so PCA (Principal Component Analysis) was employed to reduce the dimension of the feature vector. Finally, we built a pitch modulation information biding detector based on the dimension reduced feature vector and SVM (Support Vector Macbine) classifier. Experiments on different speech datasets show that the proposed steganalysis algorithm is very effective: the accuracy is more than 96 % when speech length equals to or is greater than 2s. So this paper gives an effective method for compression domain information hiding detection.

关 键 词:基音调制信息隐藏 共生特性 隐写检测 主成分分析 支持向量机 

分 类 号:TP309[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象