基于示功图的油井故障诊断专家系统研究  被引量:6

The research of oilwell fault diagnosis expert system based on dynamometer card

在线阅读下载全文

作  者:袁文琪[1] 胡敏[1] 

机构地区:[1]浙江工业职业技术学院电气电子工程学院,浙江绍兴312000

出  处:《电子设计工程》2015年第18期119-122,共4页Electronic Design Engineering

摘  要:在石油开采中,能够对抽油井井下的故障进行预测和诊断,并计算油井的产油量,从而及时了解和掌握采油系统的工况,实现采油系统的自动化监控和科学管理,是当前迫切需要解决的一个问题。本文针对如何实现油井故障自动诊断进行研究,通过实测示功图、提取功图特征值,并结合神经网络,以及能耗计算辅助判断故障类型的方法,从而建立油井故障诊断专家系统,通过油田实采数据验证,使诊断结果正确率基本达到95%,结论表明该方法是一种较为成功的尝试,有较高的实用推广性。In oil exploitation, the capability of pumping well downhole fault prediction and diagnosis, and calculating the oil production, so as to timely know and master the working condition of the oil exploitation system, realize the automation monitoring and scientific management of oil exploitation system, is an urgent problem to be solved in the oil industry. Therefore, the research of pumping well fault diagnosis technology has a high practical value, and it has also been an important task to do- mestic and oversea oil exploitation engineering technicist. In this paper, the research is according to the measured indicator diagram, extracting the characteristic values of indicator diagrams and combining with the neural network technology to establish the oilweU fault diagnosis expert system, and realize the oilwell fault automatic diagnosis. The accuracy of fault diagnosis is basicaUy up to 95 percent.

关 键 词:示功图 有杆抽油系统 专家系统 神经网络 故障诊断 能耗计算 

分 类 号:TN98[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象