检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李合朋[1]
机构地区:[1]四川文理学院数学与财经学院,四川达州635000
出 处:《四川文理学院学报》2015年第5期7-9,共3页Sichuan University of Arts and Science Journal
基 金:四川文理学院2013年度自然科学面上项目"动力系统几何理论研究"(2013Z004Y)
摘 要:用Witten形变理论在带边微分流形上给出Morse不等式一个新的证明方法.首先,说明了相切型Morse函数很自然地与带边流形的Hodge理论相结合;然后,利用Witten形变给出算子ΔT在临界点的性态,进而证明了定理.Witten deformation theory is applied to a new proof of the Morse inequalities on a differentiable manifold with boundary. It is explained that the tangential Morse function is naturally combined with the Hodge theory of the manifold with boundary, then, Witten deformation gives the behavior of ΔT at critical point, and thus the theorem is proved.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28