基于欧拉插值的最小二乘混合配点法在弹性力学平面问题中的应用  

APPLICATION OF THE EULER INTERPOLATION-BASED LEAST SQUARE MIXED COLLOCATION METHOD IN ELASTIC PLANE PROBLEMS

在线阅读下载全文

作  者:王志芬[1] 李春光[1] 刘丰[1] 郑宏[1] 

机构地区:[1]中国科学院武汉岩土力学研究所岩土力学与工程国家重点实验室,湖北武汉430071

出  处:《工程力学》2015年第9期27-33,48,共8页Engineering Mechanics

基  金:国家重点基础研究发展计划(973)项目(2011CB013505)

摘  要:由于常规配点型无网格法存在求解不稳定、精度差和求解高阶导数等问题,提出了基于欧拉插值的最小二乘混合配点法。该方法同时以位移和应变作为未知量,通过欧拉插值将未知变量的导数表达出来,同时在插值中引入高斯权函数,并代入微分方程,从而形成以位移和应变为未知数的超定方程组,然后形成最小二乘意义下的法方程,法方程和相应的位移边界条件、应力边界条件一起形成定解体系。该方法不需要域积分,是一种真正的无网格法。一些典型的弹性力学平面问题表明本文方法具有良好的精度。Conventional collocation meshless methods suffer from instability, poor accuracy and high-order derivation problems in the solution processes. The least square mixed collocation method based on the Euler interpolation is proposed in this study to overcome the above problems. Both the displacement and the strain are unknowns, the derivatives of which are expressed by using the Euler interpolation. The Gaussian weight function is introduced, resulting in over-determined systems. The over-determined systems are to be solved subjected to boundary conditions in terms of stress and displacement. This proposed method does not require domain integration, which is essentially truly meshless. Typical examples of plane elastic problems are used to demonstrate the high accuracy of the method.

关 键 词:无网格法 配点法 欧拉插值 混合法 高斯权函数 

分 类 号:O343.1[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象