检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张磊[1]
出 处:《西北师范大学学报(自然科学版)》2015年第5期29-32,37,共5页Journal of Northwest Normal University(Natural Science)
基 金:甘肃省自然科学基金资助项目(1310RJZA076)
摘 要:在复数范围内讨论了Modified Korteweg de Vries(mKdV)方程孤立波解的结构.发现在一定参数情况下,该解的实部为反向或同向双峰孤立波而虚部为双扭结状孤立波(或反之).接着对文献中提出的有限差分格式进行了理论分析,表明其为二阶精度的条件稳定格式,并解析地给出了数值稳定性条件.最后采用该格式对mKdV方程描述的该类波的动力学稳定性进行了数值研究,发现既存在动力学稳定的孤立波,也存在动力学不稳定的孤立波.The structures of a new type of solitary wave solutions for the mKdV equation within the scope of complex number is discussed . It is found , under certain parameters , that the real part of the solitary solution has two bell‐like peaks with the same direction or inverse direction , while the imaginary part of the solitary wave solution has two kinks . We also made a detailed analysis on the truncation error and the numerical stability for a finite difference scheme presented in relative reference . T he results show that the accuracy of this approach is of order 2 and it is conditional stable . The condition of numerical stable for this scheme is also presented analytically . At last , we numerically investigate the dynamical instability of the solitary waves described by the mKdV equation via the finite difference method . The results indicate that it exists both stable and unstable solitary waves .
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127