检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]鲁东大学数学与统计科学学院,烟台264025 [2]鲁东大学信息与电气工程学院,烟台264025
出 处:《应用概率统计》2015年第4期432-448,共17页Chinese Journal of Applied Probability and Statistics
基 金:supported by the Doctoral Fund of Ludong University(LY2013001,LY201222);Science and Technology Development Projects of Shandong Province(2012YD01056);Shangdong Province Young and Middle-Aged Scientists Research Awards Fund(BS2013SF029);National Natural Science Foundation of China-Tianyuan Fund for Mathematics(11426126);Natural Science Foundation of Shandong Province(ZR2014AP007)
摘 要:在某些场合,回归模型中的预测变量与响应变量不能被直接观测,而是受到某个可观测变量的影响,在这种情况下人们提出了协变量调整模型.本文在时间序列场合下讨论协变量调整非参数回归模型(CANR),提出了回归函数的两步估计法,在α-混合条件下讨论了估计的大样本性质,最后研究了模型在模拟和实际金融数据中的应用.The covariate-adjusted regression model was initially proposed for the situations where both the predictors and the response variables are not directly observed, but are distorted by some common observable covariates. In this paper, we investigate a covariate-adjusted nonparametric regression (CANR) model and consider the proposed model on time series setting. We develop a two-step estimation procedure to estimate the regression function. The asymptotic property of the proposed estimation is investigated under the α-mixing conditions. Both the real data and simulated examples are provided for illustration.
关 键 词:Α-混合 协变量调整非参数回归 时间序列.
分 类 号:O212.7[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.189.192.24