基于改进PIDNN滑模控制的电压型PWM整流器  被引量:1

Improved PID Neural Network Sliding-mode Controller for Voltage Source PWM Rectifier

在线阅读下载全文

作  者:彭一芯 魏建勋[2] 黄辉先[1] 方鑫[1] 陆建龙[1] 

机构地区:[1]湘潭大学信息工程学院,湖南湘潭411105 [2]湘潭电机股份有限公司,湖南湘潭411105

出  处:《计算技术与自动化》2015年第3期26-32,共7页Computing Technology and Automation

基  金:湖南省教育厅重点项目资助(12A136);企业合作项目:特研协(2013-122-6)

摘  要:针对传统滑模变结构控制在三相电压型PWM整流器中应用时参数摄动所引起的抖动现象,提出一种改进PID神经网络的滑模变结构在线控制方法,将PID三个参数作为神经网络隐藏层的神经元,利用PID算法响应快、无静差的特点以及神经网络的在线自学习能力,实时对滑模趋近律参数进行修改,从而缩短系统状态进入滑模面的时间并减小抖动。对选取的价值函数进行改进,使算法不会陷入局部最优而逼近全局最优解,并对系统的全局稳定性进行分析。通过仿真和实验验证,结果表明该方法能使系统全局稳定,抖动有明显削弱且具有更好的动态响应。For the problem that the system input parameters exists disturbances when the traditional sliding-mode varia-ble-structure control(SMVSC)is applied to the three-phase voltage source PWM rectifier,an online solution that sliding-mode variable-structure control base on improved PID neural network design was presented in this paper,taking three pa-rameters of PID as neurons of neural network in the hidden layer and considering that PID algorithm is of fast response,no static error and the online self-learning ability of neural network,the PID algorithm and neural network is combined to modi-fy the sliding approaching rate parameter in real-time,thus the time of system state into the sliding surface and jitter is re-duced.Through improving the selected value function,the algorithm cannot fall into local minimum and the global optimal solution is approached;also,the overall stability of the system is analyzed.Finally into simulation and experimental valida-tion research,show that the method possesses smaller shake and preferable dynamic response.

关 键 词:PWM整流器 滑模变结构 PID神经网络 趋近律 全局最优解 

分 类 号:TM46[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象