基于支持向量回归的二次冷轧轧制力预报模型  被引量:2

A rolling force prediction model based on support vector regression for double cold reduction

在线阅读下载全文

作  者:赵章献 王东城[1,2] 刘宏民[1,2] 

机构地区:[1]燕山大学国家冷轧板带装备及工艺工程技术研究中心,秦皇岛066004 [2]亚稳材料制备技术与科学国家重点实验室,秦皇岛066004

出  处:《塑性工程学报》2015年第4期49-53,共5页Journal of Plasticity Engineering

基  金:国家科技支撑计划资助项目(2011BAF15B02);河北省自然科学基金资助项目(E2012203108)

摘  要:为提高二次冷轧兼平整机组在二次冷轧模式下轧制力的预报精度,建立了一种基于摩擦系数自学习的轧制力预报模型。考虑到摩擦系数自学习模型的不足,为进一步提高轧制力的预报精度,提出了一种支持向量回归预测轧制力的计算误差与摩擦系数自学习相结合的轧制力预报方法。结果表明,该模型的计算值与实际值吻合较好,误差控制在±7%以内,满足现场生产要求,具有较高的工程应用价值。Double cold reduction strip featured by thin thickness and high strength, is widely used in electron, can-making fields and so on. In order to improve the precision of rolling force prediction of a certain double cold reduction and temper rolling mill, a friction coefficient self-learning model is established to predict the rolling force. Considering the deficiency of the friction coefficient self-learning model, the support vector regression is adopted to predict the calculation error of the roiling force, and then the friction coefficient self-learning model combined with the error is used to obtain the high accurate rolling force. The results show that the predicted rolling force is in agreement with the measured values with error within ±7 %. the model satisfies the actual conditions and is valuable to engineering application.

关 键 词:二次冷轧 轧制力预报 摩擦系数自学习 支持向量回归 

分 类 号:TG335.5[金属学及工艺—金属压力加工]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象