检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张先超[1] 刘兴长[1] 钟一洋[2] 张春园[1]
机构地区:[1]后勤工程学院后勤信息与军事物流工程系,重庆401311 [2]后勤工程学院学员旅,重庆401311
出 处:《重庆理工大学学报(自然科学)》2015年第9期116-121,共6页Journal of Chongqing University of Technology:Natural Science
基 金:重庆市自然科学基金计划项目(CSTC;2009BB2179)
摘 要:针对基于单一的粒子群或人工鱼群的无线传感器网络定位算法性能存在缺陷的问题,提出一种基于粒子群和人工鱼群融合优化算法的无线传感器网络定位算法。采用RSSI测距,利用测得的距离信息和锚节点位置信息建立适应度函数。在迭代寻优阶段,采用粒子群和人工鱼群协同进化的策略,同时对性能较差的个体进行变异操作,用较优的群体对整个种群进行更新。仿真结果表明:该定位算法具有更优越的性能,加快了收敛速度,提高了定位精度和稳定性。To the question that the localization algorithm in wireless sensor network which was based on the single particle swarm algorithm or artificial fish swarm algorithm remains some performance pit- falls, this paper put forward a localization algorithm in wireless sensor network which was an optimal fusion algorithm based on particle swarm algorithm and artificial fish swarm algorithm. RSSI was a- dopted by the localization algorithm and utilized the range information and anchor nodes location infor- mation which measured by RSSI to build fitness function. At the stage of iterative refinement, it a- dopted the strategy that particle swarm and artificial fish co-evolutionary strategy. Meanwhile, it car- ried out mutation operation to the poor performance individual, and then made use of the better group to update the whole group. The simulations reveal that the localization algorithm possesses superior performance, accelerates convergence velocity and improves location accuracy as well as stability.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.79