基于OSN的谣言传播模型及影响力节点研究  被引量:7

The Research of Dynamic Rumor Spreading Model and Influential Nodes Based on Online Social Network

在线阅读下载全文

作  者:蒙在桥 傅秀芬[2] 陈培文[2] 陆靖桥 

机构地区:[1]中山大学信息科学与技术学院,广州510006 [2]广东工业大学计算机学院,广州510006

出  处:《复杂系统与复杂性科学》2015年第3期45-52,共8页Complex Systems and Complexity Science

基  金:广东省自然科学基金(10451009001004804)

摘  要:经典的谣言传播模型较难描述现实在线社交网络的复杂活跃模式,为此提出一个基于在线社交网络的动态谣言传播模型。该模型采用传播者基于时间退化函数的自发退化方式,动态指定节点的权威度和免疫力,并考虑了接收增强信号效应。通过对真实微博网络的谣言传播仿真验证了模型的有效性。将模型用于识别网络中的影响力节点,根据传播仿真数据评估节点的传播影响力,并分析节点传播影响力与各中心性指标间的相关性。结果显示:有向社交网络中节点的影响力并不能由k-核的大小表征,而出度和紧密中心性才是更好的描述标量。Recent literature has revealed that the classical rumor spreading models were severely short when descripting the complex activity patterns of online social network (OSN). In this pa- per, we proposed a new dynamic rumor spreading model (DRSIR) based on OSN. In this model, we introduced the time delay annihilation function of spreaders, the dynamic authority and resist- ance of nodes and the receiving reinforced signal mechanisms with the aim of filling the gap be- tween theoretical and experimental results. We verified the effectiveness of the model by simula- ting rumor spreading on the real-world OSN which crawled from Sina microblog. To Identifying influential nodes in directed OSN, we used the DRSIR model to perform computer simulations by the initialization of every node to be the single spreader to examine the spreading influence of the nodes ranked by different centrality measures and find surprising results. Namely, the spreading capabilities of the nodes do not depend on their k-core index, which is obtained by successive pruning of nodes with degree, and instead, the outdegree and the closeness centrality of nodes seem to be the better topological descriptor to locate such influential individuals.

关 键 词:在线社交网络 谣言传播模型 建模仿真 影响力节点 

分 类 号:N94[自然科学总论—系统科学] TP391.9[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象