检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]重庆邮电大学软件工程学院重庆南岸区400065 [2]北京邮电大学电子工程学院北京海淀区100876
出 处:《电子科技大学学报》2015年第5期743-748,共6页Journal of University of Electronic Science and Technology of China
基 金:重庆市教委科学技术研究项目(KJ1400408,KJ1400407);重庆市基础与前沿研究计划项目(cstc2014jcyj A40043,cstc2014jcyj A10051);重庆市大学生创新训练计划项目(渝教高(2013)27号)
摘 要:物联网中的物体识别可以减少人为的参与,提高物物相连的效率。该文针对物联网环境中的物体识别进行了初步研究,提出了一种结合代数多重网格的物体识别的方法,降低了物理存储和网络传输的代价。首先运用代数多重网格方法对不同模糊程度的图像进行重建,在此基础上进行特征检测;然后运用"词袋"模型对使用了代数多重网格方法与未使用该方法的物体识别进行了对比试验。实验结果表明,运用一定程度的模糊图像识别物体能得到较高的稳定性,并且提升了与非同一场景的物体识别的区分度;运用代数多重网格方法的"词袋"模型提高了物体识别的准确率。Object recognition in the Intemet of things (IOT) can make the connection of objects easier by reducing the participation of the people significantly. Because of the particularity of IOT, how to reduce the storage and network transmission cost is an important research topic. In this paper, algebraic multigrid method is proposed to reduce the storage and network transmission costs in the application of object recognition under the environment of IOT. Firstly, the coarse grid data extracted by algebraic multi-grid (AMG) method is reconstructed, then the features are detected for object recognition, and finally, an object recognition experiment is provided by the "bag of words" model in the images reconstructed with and without the algebraic multi-grid method. The experimental results show that the "bag of words" model with algebraic multi-grid method can recognize the blurred objects more steadily than the model without algebraic multi-grid method, and the distinguish degree is improved between the same scenes and the different ones by the method of AMG. Therefore, AMG method can be used as a new feature extraction method in object recognition under the IOT environment.
关 键 词:代数多重网格 特征提取 图像重建 物体识别 物联网
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15