检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈超[1] 李天斌[1] 陈国庆[1] 高美奔[1]
机构地区:[1]成都理工大学地质灾害防治与地质环境保护国家重点实验室.成都610059
出 处:《现代隧道技术》2015年第5期54-60,共7页Modern Tunnelling Technology
基 金:国家自然科学基金项目(41230635,41002110);交通运输部西部交通建设科技项目(20113188051090)
摘 要:随着隧道工程的建设,公路隧道的非对称挤压型破坏问题越发突出。文章在圆形隧道断面塑性区的鲁宾涅特解基础上,通过旋转最大主应力作用方向,由复变函数理论得到了隧道深埋段非圆形洞口围岩塑性区半径解析公式。参考非轴对称荷载作用下圆形隧道弹塑性位移解析解,利用映射函数和变换规律,推导出了实际隧道围岩挤压型变形量的计算公式。研究分析表明,实际隧道围岩塑形区分布与最大主应力及隧洞形状相关,通过一定的分析和计算可得到实际隧道塑形区分布范围,为同类隧道的设计、施工提供参考。With the development of tunnel projects, problems related to the squeezing deformation of highway tunnels under asymmetrical loads are more prominent. In this paper, based on Rubinnat's solution for the plastic zone of a circular tunnel section and by means of rotating the direction of the maximum principal stress, an ana- lytical formula for the radius of the plastic zone of surrounding rock around a non-circular portal of a deep buried tunnel section was derived by the complex variable function theory. Furthermore, referencing the analytical solu- tion to the elastic-plastic displacement of a circular tunnel under an asymmetrical load and using the mapping function and transformation law, a calculation formula for the actual squeezing deformation of tunnel surrounding rock was deduced accordingly. The analysis indicates that the actual plastic zone distribution of a tunnel's sur- rounding rocks is related to the maximum principal stress and shape of the tunnel, and the actual distribution scope of the plastic zone of a tunnel's surrounding rocks can be obtained by analysis and calculation, which pro- vides a reference for the design and construction of similar tunnels.
分 类 号:U451.2[建筑科学—桥梁与隧道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.218.102.138