Characteristics of drain-modulated generation current in n-type metal-oxide-semiconductor field-effect transistor  

Characteristics of drain-modulated generation current in n-type metal-oxide-semiconductor field-effect transistor

在线阅读下载全文

作  者:陈海峰 过立新 郑璞阳 董钊 张茜 

机构地区:[1]School of Electronic Engineering,Xi’an University of Posts and Telecommunications

出  处:《Chinese Physics B》2015年第7期595-600,共6页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant No.61306131);the Research Project of Education Department of Shaanxi Province,China(Grant No.2013JK1095)

摘  要:Drain-modulated generation current IDMGinduced by interface traps in an n-type metal-oxide-semiconductor fieldeffect transistor(n MOSFET) is investigated. The formation of IDMGascribes to the change of the Si surface potential φs.This change makes the channel suffer transformation from the inversion state, depletion I state to depletion II state. The simulation result agrees with the experiment in the inversion and depletion I states. In the depletion II state, the theoretical curve goes into saturation, while the experimental curve drops quickly as VDincreases. The reason for this unconformity is that the drain-to-gate voltage VDGlessens φs around the drain corner and controls the falling edge of the IDMG curve.The experiments of gate-modulated generation and recombination currents are also applied to verify the reasonability of the mechanism. Based on this mechanism, a theoretical model of the IDMGfalling edge is set up in which IDMGhas an exponential attenuation relation with VDG. Finally, the critical fitting coefficient t of the experimental curves is extracted. It is found that t = 80 m V = 3k T /q. This result fully shows the accuracy of the above mechanism.Drain-modulated generation current IDMGinduced by interface traps in an n-type metal-oxide-semiconductor fieldeffect transistor(n MOSFET) is investigated. The formation of IDMGascribes to the change of the Si surface potential φs.This change makes the channel suffer transformation from the inversion state, depletion I state to depletion II state. The simulation result agrees with the experiment in the inversion and depletion I states. In the depletion II state, the theoretical curve goes into saturation, while the experimental curve drops quickly as VDincreases. The reason for this unconformity is that the drain-to-gate voltage VDGlessens φs around the drain corner and controls the falling edge of the IDMG curve.The experiments of gate-modulated generation and recombination currents are also applied to verify the reasonability of the mechanism. Based on this mechanism, a theoretical model of the IDMGfalling edge is set up in which IDMGhas an exponential attenuation relation with VDG. Finally, the critical fitting coefficient t of the experimental curves is extracted. It is found that t = 80 m V = 3k T /q. This result fully shows the accuracy of the above mechanism.

关 键 词:interface trap GENERATION surface potential NMOSFET 

分 类 号:TN386[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象