基于多模型动态融合的自适应软测量建模方法  被引量:2

An Adaptive Soft Sensor Modeling Method Based on Multi-Model Dynamic Fusion

在线阅读下载全文

作  者:傅永峰[1] 徐欧官[1] 陈祥华[1] 陈伟杰[1] 

机构地区:[1]浙江工业大学之江学院,浙江杭州310024

出  处:《高校化学工程学报》2015年第5期1186-1193,共8页Journal of Chemical Engineering of Chinese Universities

基  金:国家自然科学基金(61304125;61203133)

摘  要:针对目前软测量建模过程中,单个模型难以精确描述复杂非线性对象而多模型又多采用静态模型因而对系统实际运行中的动态变化考虑不足的问题,提出了一种基于多模型动态融合的自适应软测量建模方法。该方法首先采用仿射传播聚类算法对样本数据进行分类,并对不同类别的输入样本分别建立基于高斯过程回归的子模型,最后使用动态Gauss-Markov估计对各子模型估计值进行融合。将上述方法应用于对二甲苯(p-xylene,简称PX)吸附分离过程纯度的软测量建模,仿真结果表明该方法能够有效地增强模型适应工况变化的能力,是一种有效的软测量建模方法。Single-model soft sensors in soft sensor modeling are difficult to accurately describe complex nonlinear objects, while multi-model soft sensors usually use several static models, which cannot reflect the dynamic characteristics of industrial processes. An adaptive soft sensor model based on the multi-model dynamic fusion method was built which was implemented by an adaptive Gauss-Markov estimation method proposed in this study. The input samples of the model were clustered by affinity propagation algorithm. Sub-models were built for each clustering based on Gaussian process regression algorithm. Moreover, the model outputs were predicted by fusing the values of sub-models dynamically based on the adaptive Gauss-Markov estimation. This soft sensor model was applied to predict p-xylene(PX) purity in adsorption separation processes. The results indicate that the proposed model-building method actually increased the adaptive ability of the model under various operation conditions.

关 键 词:软测量 仿射传播(AP) 高斯过程回归(GPR) 动态Gauss-Markov估计 PX纯度 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象