检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京大学电子科学与工程学院,南京210023
出 处:《西安交通大学学报》2015年第10期103-108,共6页Journal of Xi'an Jiaotong University
基 金:国家自然科学基金资助项目(61105015);国家科技重大专项课题资助项目(2012ZX03005-004-003)
摘 要:针对传统神经网络预测模型预测结果准确性低且存在大量无效迭代的问题,提出了自适应权重粒子群神经网络交通流预测(PSOA-NN)模型。首先根据待预测点的上下游观测点数目和历史数据,随机初始化若干组模型参数并计算每组参数对应粒子的适应度;然后采用改进的 sigmoid 函数替代原有模型中的固定惯性权重,并根据其中适应度变好的粒子更新粒子速度和位置,一直迭代到粒子适应度小于预设值为止;最后将满足条件粒子对应的模型参数应用到神经网络模型,根据实时交通流数据预测出15 min后的数据。仿真表明,使用 PSOA-NN 模型,可使得在同等预测误差范围内收敛速度提升 0.6~1.7 倍。A novel traffic forecasting model using particle swarm optimized neural network with adaptive weights (PSOA-NN) is proposed to address the issue of low accuracy prediction of traditional neural network forecasting model with a lot of invalid iterations in prediction process. Several groups of model parameters are initialized casually according to the observing point numbers of up and down streams and historical data in a neighbourhood of the forecast location, and the particle fitness of corresponding parameters in each group is calculated. Then, an improved sigmoid function is used to replace the fixed inertia weights in original model, speeds and locations are updated for the particles with improved fitness, and the iteration continues until the fitnesses of particles are less than a preset value. Finally, the model parameters that satisfies particle requirement are applied to the neural network model, and the traffic data 15 rain later is predicted according to real time traffic flow data. Simulation results show that the convergent speed of the PSOA-NN model increases by about 0.6 to 1.7 times within the identical deviation range.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30