干斜压大气拉格朗日原始方程组的半解析解法和非线性密度流数值试验  被引量:1

Semi-analytical solution of the dry baroclinic Lagrange primitive equation and numerical experiment of a non-linear density current

在线阅读下载全文

作  者:郝世峰 楼茂园 杨诗芳 李超 孔照林 裘薇 

机构地区:[1]浙江省气象台,杭州310017

出  处:《物理学报》2015年第19期195-203,共9页Acta Physica Sinica

基  金:公益性行业(气象)科研专项基金(批准号:GYHY201306010);国家自然科学基金青年科学基金(批准号:41405047);国家科技重大专项(批准号:2012ZX07101-010)资助的课题~~

摘  要:以差分方程代替微分方程给大气原始方程组求解带来了诸多难以解决的问题,对于(半)拉格朗日模式来说质点轨迹的计算与Helmholtz方程的求解是两大难题.本文通过对气压变量代换,并在积分时间步长内将原始方程组线性化,近似为常微分方程组,求出方程组的半解析解,再采用精细积分法求解半解析解.半解析方法可同时计算风、气压和位移,无需求解Helmholtz方程,质点的位移采用积分风的半解析解得到,相比采用风速外推的计算方法,半解析方法更科学合理.非线性密度流试验检验表明:半解析模式能够清晰地模拟Kelvin-Helmholtz切变不稳定涡旋的发生和发展过程;模拟的气压场和风场环流结构与标准解非常相似,且数值解是收敛的,同时,总质量和总能量具有较好的守恒性.试验初步证明了采用半解析方法求解大气原始方程组是可行的,为大气数值模式的构建提供了一个新的思路.To solve atmospheric primitive equations, the finite difference approach would result in numerous problems, com-pared to the differential equations. Taking the semi-Lagrange model as an example, there exist two difflicult prob-lems——the particle trajectory computation and the solutions of the Helmholtz equations. In this study, based on the substitution of atmosphere pressure, the atmospheric primitive equations are linearized within an integral time step, which are broadly seen as ordinary differential equations and can be derived as semi-analytical solutions (SASs). The variables of SASs are continuous functions of time and discretized in a special direction, so the gradient and divergence terms are solved by the difference method. Since the numerical solution of the SASs can be calculated via a highly pre-cise numerical computational method of exponential matrix——the precise integration method, the numerical solution of SASs at any time in the future can be obtained via step-by-step integration procedure. For the SAS methodology, the pressure, as well as the wind vector and displacement, can be obtained without solving the Helmholtz formulations. Compared to the extrapolated method, the SAS is more reasonable as the displacements of the particle are solved via time integration. In order to test the validity of the algorithms, the SAS model is constructed and the same experi-ment of a non-linear density current as reported by Straka in 1993 is implemented, which contains non-linear dynamics, transient features and fine-scale structures of the fluid flow. The results of the experiment with 50 m spatial resolution show that the SAS model can capture the characters of generation and development process of the Kelvin-Helmholtz shear instability vortex; the structures of the perturbation potential temperature field are very close to the benchmark solutions given by Straka, as well as the structures of the simulated atmosphere pressure and wind field. To further test the convergence of the numerical solut

关 键 词:大气原始方程组 半解析解 精细积分 密度流 

分 类 号:O411[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象