检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]武汉大学遥感信息工程学院,湖北武汉430079
出 处:《测绘学报》2015年第10期1142-1151,共10页Acta Geodaetica et Cartographica Sinica
基 金:国家自然科学基金(41322010);国家863计划(2013AA12A401)~~
摘 要:在面向对象的变化检测过程中,确定对象的最优分割尺度直接关系到后续的变化信息提取与分析。针对该问题,提出了基于多尺度分割与融合的对象级变化检测新方法。首先,利用由细到粗的尺度分割来获取不同尺寸的目标对象,然后依据对象的特征进行变化向量分析得到各个尺度上的变化检测结果。为了提高变化检测的精度,本文引入模糊融合及两种决策级融合方法进行多尺度融合,并利用SPOT5多光谱遥感图像进行试验。与像素级的变化检测方法相比,总体精度提高了10%左右,试验结果证明了这几种融合策略的有效性和可行性。In the process of object-oriented change detection,the determination of the optimal segmentation scale is directly related to the subsequent change information extraction and analysis.Aiming at this problem,this paper presents a novel object-level change detection method based on multi-scale segmentation and fusion.First of all,the fine to coarse segmentation is used to obtain initial objects which have different sizes;then,according to the features of the objects,the method of change vector analysis is used to obtain the change detection results of various scales.In order to improve the accuracy of change detection,this paper introduces fuzzy fusion and two kinds of decision level fusion methods to get the results of multi-scale fusion.Based on these methods,experiments are done with SPOT5multi-spectral remote sensing imagery.Compared with pixel-level change detection methods,the overall accuracy of our method has been improved by nearly 10%,and the experimental results prove the feasibility and effectiveness of the fusion strategies.
分 类 号:P237[天文地球—摄影测量与遥感]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229