基于多目标遗传算法的增程式电动汽车动力系统参数匹配优化研究  被引量:4

Optimal Study on Extended-Range Electric Vehicle's Powertrain Parameter Matching Based on Multi-objective Genetic Algorithm

在线阅读下载全文

作  者:黄欣[1] 陈凌珊[1] 程伟[2] 孙逸神[2] 张晓杰[2] 

机构地区:[1]上海工程技术大学汽车工程学院,上海201620 [2]上海汽车集团股份有限公司前瞻技术研究部,上海201804

出  处:《计算机测量与控制》2015年第10期3539-3542,共4页Computer Measurement &Control

基  金:上海市科委"面向商业化的强混动力系统开发"课题

摘  要:在完成增程式电动汽车(E—REV)动力匹配与性能仿真基础上,针对E—REV动力系统参数匹配优化问题,以整车制造成本、汽车两种运行模式下等效百公里油耗以及百公里加速时间为目标,以驱动电机峰值功率、发动机额定功率以及电池能量为变量,设计了基于线性加权的多目标遗传算法;结果表明,适当牺牲汽车动力性可最大降低制造成本5.19%,并降低等效油耗9.61%以上;可以得出,通过改善匹配方案能进一步提高整车的动力经济性并降低制造成本,研究对E—REV市场推广及量产化具有重要意义。Based on the completion of powertrain parameter matching and performance simulation of extended--range electric vehicle (E --REV), a linear weighted multi--objective genetic algorithm was desinged in view of the optimization of E REV' s powertrain parameter matching, in which parameters of drive motor' s peak power, engine' s rated power and battery' s energy were optimized with the targets of manufacturing costs, equivalent fuel consumption and acceleration time per 100 km. Results showed that the vehicle' s manufacturing costs and fuel consumption can be reduced by 5. 19% and 9.61% mostly at the expense of appropriate sacrifices of dynamic. Therefore the vehicle' s dynamic and economic performance can be further improved and manufacturing costs be reduced by suitable matching scheme, which played a great significance on E--REV' s production in the market.

关 键 词:增程式电动汽车 参数匹配 多目标优化 

分 类 号:U469.7[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象