检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:任俊亮[1] 邢清华[1] 李龙跃[1] 贾哲[2]
机构地区:[1]空军工程大学防空反导学院,陕西西安710051 [2]空军指挥学院,北京100097
出 处:《电子学报》2015年第9期1756-1762,共7页Acta Electronica Sinica
摘 要:不同体制的多个传感器通常部署于不同位置,据此采用分布式计算思想研究其调度问题.设计了传感器指控模块和传感器模块,探讨两者间的信息交互过程,给出基于最小调度时间间隔的传感器探测任务分解方法,建立传感器探测目标的匹配度计算模型.针对调度方案生成子模块设计了一种自适应概率粒子群算法,算法中粒子的分量根据方案适应值大小以不同的概率取相应值,体现粒子在迭代过程中的思考.实例分析表明,该算法能在迭代前期较快地收敛到一个较优值,这一特点使得在迭代次数有限的情况下,算法仍可获得较好的调度方案,满足调度方案实时高效的要求.This paper introduced a distributed computing method to study the scheduling problem in multi-sensor systems. According to the features of these sensors which were usually deployed at different locations,it redesigned C2 (Command and Con-trol)module and sensor module,and discussed information interaction procedure between two modules.Then it established a sensor-target detection match degree computing model which involved task decomposition and minimal scheduling period methods.A self-adaptive probability particle swarm optimization (SAPPSO)algorithm for scheduling program was given.In SAPPSO,particle fit-ness value was based on different probabilities,which reflected the thinking of particle during iteration process.Experimental results showed that SAPPSO algorithm converged quickly,especially in the previous iteration period,which enabled SAPPSO to fulfill the requirements of real-time and high efficiency for scheduling.
分 类 号:TP391.1[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28