检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林梅羽[1]
出 处:《莆田学院学报》2015年第5期8-10,68,共4页Journal of putian University
摘 要:从教科书中关于Borel集定义的两种不同叙述法入手,应用超限归纳法,证明了这两种定义的等价性,并根据基数理论,证明了非Borel的Lebesgue可测集的存在性,进而证明了R1上非Borel的Lebesgue可测集的基数是2c-c,其中c为连续统基数。Two different statements of Borel set of R1 were referred in textbooks. Transfinite induction was used in this paper to prove the equivalence of the two different statements. Based on Z-F Axiom Systems of set theory,the paper proved the existence of the measurable set of non-Borel of Lebesgue. Furthermore, it showed that the measurable set of non-Borel of Lebesgue on R1 was 2c- c, and c is the cardinal number of continuum.
关 键 词:BOREL集 超限归纳法 基数理论 Lebesgue可测集
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.147