检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《微处理机》2015年第5期69-71,75,共4页Microprocessors
摘 要:针对传统人工目测以及现有疵点检测方法检测精度与效率不高的问题,结合基于小波变换的织物疵点检测方法和基于局部熵的织物疵点检测方法各自的特点,提出了一种基于小波变换与局部熵的织物疵点检测方法。该方法对正常织物与待测织物图像进行一层小波变换,采用大小相同且不完全重叠的局部窗口提取正常织物与待测织物图像的经向细节子图像局部熵与纬向细节子图像局部熵,计算正常织物子图像与待测织物子图像局部熵的差值绝对值,根据阈值判断是否存在疵点并直接识别常见疵点类型。仿真结果表明,该方法的检测精度比传统的基于局部熵的布匹疵点检测方法更高。Combining with the advantage of wavelet transform and local entropy, a method of fabric defect detection based on wavelet transform and local entropy is proposed for solving the problem of low detection precision and efficiency caused by the traditional eyeballing and the existed fabric defect detection. The method conducts a layer of wavelet transform to both normal fabric images and the images to be tested, uses local windows with the same size and incompletes overlap to extract their local entropy of warp and weft detail subimages, then calculates the absolute difference of local entropy of the two kinds of fabric subimages, at last estimates whether the defect is exist according to the judgement threshold and recognizes the common defect type directly. The simulation results show that the method has higher detection precision and efficiency than the traditional one based on the fabric defect detection.
关 键 词:局部熵 小波变换 织物疵点检测 子图像 差值绝对值 判断阈值
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.101.237